Preview

Siberian Journal of Philosophy

Advanced search

Once Again on Misinterpretations of Gödel’s Second Incompleteness Theorem

https://doi.org/10.25205/2541-7517-2020-18-3-132-143

Abstract

A response is given to the paper by A. M. Izmailova (Izmailova A. M. O kritike teoremy K. Gedelya o nepolnote A. V. Bessonovym [On A. V. Bessonov’s criticism of K. Gödel’s incompleteness theorem]. Studencheskii nauchnyi zhurnal “Grani nauki” [Student Scientific Journal "Facets of Science"], 2018, no. 1, p. 7-9. (in Russ.)) allegedly indicating a «serious error» in my analysis of K. Gödel’s second incompleteness theorem. It is shown that her criticism is based on gross logical errors, as well as on a misunderstanding of both the second incompleteness theorem and my results. Such a widespread misinterpretation is based on the inadmissible confusion of the proof of the consistency of formal arithmetic with the proof in it of a formula expressing its consistency. It is argued that Gödel's second theorem is not directly related to the proof of the consistency of formal arithmetic. It is proved that this theorem cannot be used in argumentation against feasibility of D. Hilbert’s finitistic program.

About the Author

A. V. Bessonov
Institute of Philosophy and Law SB RAS
Russian Federation


References

1. Антипенко Л. Г. Полемический отзыв на статью А.В. Бессонова «Предикатная зависимость второй теоремы Гёделя о неполноте» // Сиб. филос. журн. 2017. Т. 15, № 3. C. 208-217.

2. Бессонов А. В. К интерпретации теорем Гёделя о неполноте арифметики // Вестник Том. гос. ун-та. Философия. Социология. Политология. 2011. № 4. C. 177-189.

3. Бессонов А. В. О двух неверных догмах, связанных со второй теоремой Гёделя о неполноте. I // Философия науки. 2014. № 4 (63). C. 12-31.

4. Бессонов А. В. Предикатная зависимость второй теоремы Гёделя о неполноте // Вестник НГУ. Серия: Философия. 2015a. Т. 13, вып. 4. C. 5-14.

5. Bessonov A. V. Peano arithmetic can well prove its own consistency. In: 15th Congress of Logic, Methodology and Philosophy of Science, CLMPS 2015, Logic Colloquium 2015, LC 2015, Book of Abstracts (University of Helsinki, 3-8 August 2015). Helsinki, 2015b, p. 705-706.

6. Бессонов А. В. О двух неверных догмах, связанных со второй теоремой Гёделя о неполноте. II // Философия науки. 2016a. № 2(69). C. 42-61.

7. Бессонов А. В. Вторая теорема Гёделя о неполноте не дезавуирует программу Гильберта // Логико-философские штудии. 2016b. Т. 13 № 2. C. 169-170.

8. Бессонов А. В. Что доказано и что не доказано во второй теореме Гёделя о неполноте арифметики // Сиб. филос. журн. 2017. Т. 15, № 3. C. 218-233.

9. Измайлова А. М. О критике теоремы К. Гёделя о неполноте А. В. Бессоновым // Студенч. науч. журн. «Грани науки». 2018. Т. 6, № 1. С. 7-9.

10. Крайзель Г. Биография Курта Гёделя // Успехи мат. наук. 1988. Т. 43, вып. 2 (260). С. 175-216.

11. Михайлова Н. В. Системный синтез программ обоснования современной математики. Минск: МГВРК, 2008.

12. Пиньейро Г. Э. У интуиции есть своя логика. Гёдель. Теоремы о неполноте // Наука. Величайшие теории. М.: Де Агостини, 2015. Вып. 17. С. 155-162.

13. Сокал А., Брикмон Ж. Интеллектуальные уловки. Критика философии постмодерна. М.: Дом интеллект. книги, 2002.

14. Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I // Monatshefte für Mathematik und Physik, 1931, bd. 38, S. 173-198.


Review

For citations:


Bessonov A.V. Once Again on Misinterpretations of Gödel’s Second Incompleteness Theorem. Siberian Journal of Philosophy. 2020;18(3):132-143. (In Russ.) https://doi.org/10.25205/2541-7517-2020-18-3-132-143

Views: 859


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7517 (Print)